Study Guide and Intervention

Graphing Exponential Functions

Exponential Growth An exponential growth function has the form $y = b^x$, where b > 1. The graphs of exponential equations can be transformed by changing the value of the constants a, h, and k in the exponential equation: $f(x) = ab^{x-h} + k$.

Parent Function of **Exponential Growth** Functions,

 $f(x) = b^x, b > 1$

- 1. The function is continuous, one-to-one, and increasing.
- 2. The domain is the set of all real numbers.
- **3.** The *x*-axis is the asymptote of the graph.
- **4.** The range is the set of all non-zero real numbers.
- **5.** The graph contains the point (0, 1).

Example

Graph $y = 4^x + 2$. State the domain and range.

Make a table of values. Connect the points to form a smooth curve.

Х	-1	0	1	2	3
у	2.25	3	6	18	66

The domain of the function is all real numbers, while the range is the set of all positive real numbers greater than 2.

Lesson 7-1

Exercises

Graph each function. State the domain and range.

1.
$$y = 3(2)^x$$

2.
$$y = \frac{1}{3}(3)^x$$

$$3. y = 0.25(5)^x$$

 $D = \{all real numbers\};$

 $R = \{y | y > 0\}$

$$R = \{y | y > 0\}$$

$$R = \{y | y > 0\}$$

4.
$$y = 2(3)^x$$

5.
$$y = 4^x - 2$$

6.
$$y = 2^{x+5}$$

 $D = \{all real numbers\};$

 $R = \{v | v > 0\}$

 $R = \{y | y > -2\}$

Study Guide and Intervention 7-1

(continued)

Graphing Exponential Functions

Exponential Decay The following table summarizes the characteristics of **exponential** decay functions.

Parent Function of Exponential Decay Functions, $f(x) = b^x, 0 < b < 1$

- 1. The function is continuous, one-to-one, and decreasing.
- 2. The domain is the set of all real numbers.
- **3.** The *x*-axis is the asymptote of the graph.
- **4.** The range is the set of all positive real numbers.
- **5.** The graph contains the point (0, 1).

<u>Example</u>

Graph $y = \left(\frac{1}{2}\right)^x$. State the domain and range.

Make a table of values. Connect the points to form a smooth curve. The domain is all real numbers and the range is the set of all positive real numbers.

х	-2	-1	0	1	2
у	4	2	1	0.5	0.25

Exercises

Graph each function. State the domain and range.

1.
$$y = 6\left(\frac{1}{2}\right)^x$$

2.
$$y = -2\left(\frac{1}{4}\right)^x$$

$$3. y = -0.4(0.2)^x$$

D = {all real numbers};

$$R = \{y|y > 0\}$$

$$R = \{y | y < 0\}$$

D = {all real numbers};
R = {
$$y|y < 0$$
}

$$5. y = 4 \left(\frac{1}{5}\right)^{x+3} - 1$$

6.
$$y = \left(-\frac{1}{3}\right)\left(\frac{3}{4}\right)^{x-5} + 6$$

4. $y = \left(\frac{2}{5}\right)\left(\frac{1}{2}\right)^{x-1} + 2$

 $R = \{y | y > 2\}$

 $D = \{all real numbers\};$

 $D = \{all real numbers\};$

 $R = \{y | y > -1\}$

 $D = \{all real numbers\};$

 $R = \{y | y < 6\}$